Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Pediatr Dev Pathol ; 27(1): 83-89, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37801629

RESUMO

Tbx4 protein, expressed in mesenchyme of the developing lung, contributes to airway branching and distal lung growth. An association between pediatric onset of pulmonary arterial hypertension (PAH) and genetic variations coding for the T-box transcription factor 4 gene (TBX4) has been increasingly recognized. Tbx4-related PAH onset has a bimodal age distribution, including severe to lethal PAH in newborns and later onset PAH. We present an autopsy study of a 24-year-old male with a heterozygous TBX4 variant, who developed pulmonary arterial hypertension at age 12 years. This unique case highlights the complex pulmonary histopathology leading to lethal cardiopulmonary failure in the setting of TBX4 mutation.


Assuntos
Mutação em Linhagem Germinativa , Hipertensão Arterial Pulmonar , Masculino , Criança , Humanos , Recém-Nascido , Adulto Jovem , Adulto , Hipertensão Arterial Pulmonar/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Pulmão , Mutação , Fenótipo , Hipertensão Pulmonar Primária Familiar/genética , Hipertensão Pulmonar Primária Familiar/metabolismo , Fatores de Transcrição/genética
2.
Pulm Circ ; 13(1): e12200, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36824691

RESUMO

Expansion of extracellular matrix occurs in all stages of pulmonary angiopathy associated with pulmonary arterial hypertension (PAH). In systemic arteries, dysregulation and accumulation of the large chondroitin-sulfate proteoglycan aggrecan is associated with swelling and disruption of vessel wall homeostasis. Whether aggrecan is present in pulmonary arteries, and its potential roles in PAH, has not been thoroughly investigated. Here, lung tissue from 11 patients with idiopathic PAH was imaged using synchrotron radiation phase-contrast microcomputed tomography (TOMCAT beamline, Swiss Light Source). Immunohistochemistry for aggrecan core protein in subsequently sectioned lung tissue demonstrated accumulation in PAH compared with failed donor lung controls. RNAscope in situ hybridization indicated ACAN expression in vascular endothelium and smooth muscle cells. Based on qualitative histological analysis, aggrecan localizes to cellular, rather than fibrotic or collagenous, lesions. Interestingly, ADAMTS15, a potential aggrecanase, was upregulated in pulmonary arteries in PAH. Aligning traditional histological analysis with three-dimensional renderings of pulmonary arteries from synchrotron imaging identified aggrecan in lumen-reducing lesions containing loose, cell-rich connective tissue, at sites of intrapulmonary bronchopulmonary shunting, and at sites of presumed elevated pulmonary blood pressure. Our findings suggest that ACAN expression may be an early response to injury in pulmonary angiopathy and supports recent work showing that dysregulation of aggrecan turnover is a hallmark of arterial adaptations to altered hemodynamics. Whether cause or effect, aggrecan and aggrecanase regulation in PAH are potential therapeutic targets.

4.
Am J Physiol Lung Cell Mol Physiol ; 321(1): L17-L28, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33881927

RESUMO

In pulmonary arterial hypertension, plexiform lesions are associated with severe arterial obstruction and right ventricular failure. Exploring their structure and position is crucial for understanding the interplay between hemodynamics and vascular remodeling. The aim of this research was to use synchrotron-based phase-contrast micro-CT to study the three-dimensional structure of plexiform lesions. Archived paraffin-embedded tissue samples from 14 patients with pulmonary arterial hypertension (13 idiopathic, 1 with known BMPR2-mutation) were imaged. Clinical data showed high-median PVR (12.5 WU) and mPAP (68 mmHg). Vascular lesions with more than 1 lumen were defined as plexiform. Prior radiopaque dye injection in some samples facilitated 3-D rendering. Four distinct types of plexiform lesions were identified: 1) localized within or derived from monopodial branches (supernumerary arteries), often with a connection to the vasa vasorum; 2) localized between pulmonary arteries and larger airways as a tortuous transformation of intrapulmonary bronchopulmonary anastomoses; 3) as spherical structures at unexpected abrupt ends of distal pulmonary arteries; and 4) as occluded pulmonary arteries with recanalization. By appearance and localization, types 1-2 potentially relieve pressure via the bronchial circulation, as pulmonary arteries in these patients were almost invariably occluded distally. In addition, types 1-3 were often surrounded by dilated thin-walled vessels, often connected to pulmonary veins, peribronchial vessels, or the vasa vasorum. Collaterals, bypassing completely occluded pulmonary arteries, were also observed to originate within plexiform lesions. In conclusion, synchrotron-based imaging revealed significant plexiform lesion heterogeneity, resulting in a novel classification. The four types likely have different effects on hemodynamics and disease progression.


Assuntos
Hipertensão Pulmonar Primária Familiar/diagnóstico , Microscopia de Contraste de Fase/métodos , Artéria Pulmonar/patologia , Síncrotrons/instrumentação , Microtomografia por Raio-X/métodos , Adulto , Estudos de Casos e Controles , Hipertensão Pulmonar Primária Familiar/classificação , Hipertensão Pulmonar Primária Familiar/diagnóstico por imagem , Feminino , Hemodinâmica , Humanos , Masculino , Remodelação Vascular
5.
Elife ; 92020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32909945

RESUMO

The umbilical artery lumen closes rapidly at birth, preventing neonatal blood loss, whereas the umbilical vein remains patent longer. Here, analysis of umbilical cords from humans and other mammals identified differential arterial-venous proteoglycan dynamics as a determinant of these contrasting vascular responses. The umbilical artery, but not the vein, has an inner layer enriched in the hydrated proteoglycan aggrecan, external to which lie contraction-primed smooth muscle cells (SMC). At birth, SMC contraction drives inner layer buckling and centripetal displacement to occlude the arterial lumen, a mechanism revealed by biomechanical observations and confirmed by computational analyses. This vascular dimorphism arises from spatially regulated proteoglycan expression and breakdown. Mice lacking aggrecan or the metalloprotease ADAMTS1, which degrades proteoglycans, demonstrate their opposing roles in umbilical vascular dimorphism, including effects on SMC differentiation. Umbilical vessel dimorphism is conserved in mammals, suggesting that differential proteoglycan dynamics and inner layer buckling were positively selected during evolution.


Assuntos
Agrecanas/metabolismo , Miócitos de Músculo Liso , Artérias Umbilicais , Proteína ADAMTS1/metabolismo , Animais , Diferenciação Celular/fisiologia , Feminino , Humanos , Camundongos Transgênicos , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/fisiologia , Parto/fisiologia , Gravidez , Artérias Umbilicais/citologia , Artérias Umbilicais/metabolismo , Artérias Umbilicais/fisiologia
6.
Am J Physiol Lung Cell Mol Physiol ; 318(1): L65-L75, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31596108

RESUMO

This study aimed to explore the value of synchrotron-based phase-contrast microcomputed tomography (micro-CT) in pulmonary vascular pathobiology. The microanatomy of the lung is complex with intricate branching patterns. Tissue sections are therefore difficult to interpret. Recruited intrapulmonary bronchopulmonary anastomoses (IBAs) have been described in several forms of pulmonary hypertension, including alveolar capillary dysplasia with misaligned pulmonary veins (ACD/MPV). Here, we examine paraffin-embedded tissue using this nondestructive method for high-resolution three-dimensional imaging. Blocks of healthy and ACD/MPV lung tissue were used. Pulmonary and bronchial arteries in the ACD/MPV block had been preinjected with dye. One section per block was stained, and areas of interest were marked to allow precise beam-alignment during image acquisition at the X02DA TOMCAT beamline (Swiss Light Source). A ×4 magnifying objective coupled to a 20-µm thick scintillating material and a sCMOS detector yielded the best trade-off between spatial resolution and field-of-view. A phase retrieval algorithm was applied and virtual tomographic slices and video clips of the imaged volumes were produced. Dye injections generated a distinct attenuation difference between vessels and surrounding tissue, facilitating segmentation and three-dimensional rendering. Histology and immunohistochemistry post-imaging offered complementary information. IBAs were confirmed in ACD/MPV, and the MPVs were positioned like bronchial veins/venules. We demonstrate the advantages of using synchrotron-based phase-contrast micro-CT for three-dimensional characterization of pulmonary microvascular anatomy in paraffin-embedded tissue. Vascular dye injections add additional value. We confirm intrapulmonary shunting in ACD/MPV and provide support for the hypothesis that MPVs are dilated bronchial veins/venules.


Assuntos
Pulmão/patologia , Síndrome da Persistência do Padrão de Circulação Fetal/patologia , Alvéolos Pulmonares/anormalidades , Veias Pulmonares/patologia , Brônquios/patologia , Humanos , Hipertensão Pulmonar/patologia , Imageamento Tridimensional/métodos , Recém-Nascido , Microscopia de Contraste de Fase/métodos , Alvéolos Pulmonares/patologia , Síncrotrons , Microtomografia por Raio-X/métodos
7.
Pulm Circ ; 6(3): 347-59, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27683612

RESUMO

Pulmonary arterial hypertension (PAH) is a lethal condition for which there is no effective curative pharmacotherapy. PAH is characterized by vasoconstriction, wall thickening of pulmonary arteries, and increased vascular resistance. Versican is a chondroitin sulfate proteoglycan in the vascular extracellular matrix that accumulates following vascular injury and promotes smooth-muscle cell proliferation in systemic arteries. Here, we investigated whether versican may play a similar role in PAH. Paraffin-embedded lung sections from patients who underwent lung transplantation to treat PAH were used for immunohistochemistry. The etiologies of PAH in the subjects involved in this study were idiopathic PAH, scleroderma, and congenital heart disease (atrial septal defect) with left-to-right shunt. Independent of the underlying etiology, increased versican immunostaining was observed in areas of medial thickening, in neointima, and in plexiform lesions. Western blot of lung tissue lysates confirmed accumulation of versican in patients with PAH. Double staining for versican and CD45 showed only occasional colocalization in neointima of high-grade lesions and plexiform lesions. In vitro, metabolic labeling with [(35)S]sulfate showed that human pulmonary artery smooth-muscle cells (hPASMCs) produce mainly chondroitin sulfate glycosaminoglycans. In addition, hypoxia, but not cyclic stretch, was demonstrated to increase both versican messenger RNA expression and protein synthesis by hPASMCs. Versican accumulates in vascular lesions of PAH, and the amount of versican correlates more with lesion severity than with underlying etiology or inflammation. Hypoxia is a possible regulator of versican accumulation, which may promote proliferation of pulmonary smooth-muscle cells and vascular remodeling in PAH.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA